El inminente vuelo tripulado que rodeará la Luna apunta a convertirse en un nuevo hito para la exploración espacial, aunque también reactiva un profundo debate técnico sobre riesgos, decisiones de ingeniería y la manera en que la NASA enfrenta la incertidumbre. A pesar del entusiasmo que despierta Artemis II, permanece una interrogante central: ¿basta el conocimiento disponible para asegurar un retorno sin contratiempos?
El 6 de febrero, siempre que no surjan nuevos contratiempos, cuatro astronautas emprenderán una misión histórica que los acercará a orbitar la Luna por primera vez en más de cincuenta años. Viajarán en Orión, la cápsula creada por la NASA a lo largo de dos décadas y concebida como pieza central del programa Artemis. Aun así, el vuelo no está exento de controversias. La nave despegará con un elemento esencial —su escudo térmico— que ya presentó un comportamiento inesperado en una misión anterior y que continúa despertando inquietudes entre especialistas pese a los prolongados estudios realizados.
La NASA sostiene que el riesgo está identificado, estudiado y mitigado. Algunos ingenieros y exastronautas, en cambio, consideran que aún existen incógnitas relevantes. El debate no gira en torno a si la misión fallará, sino a cómo se interpreta el riesgo aceptable cuando hay vidas humanas en juego y datos limitados sobre el comportamiento real de un sistema en condiciones extremas.
El papel crítico del escudo térmico en una misión lunar
El escudo térmico de Orión constituye uno de los elementos clave de la nave, ya que se encarga de salvaguardar la cápsula y a quienes viajan en ella durante la etapa más crítica del trayecto: la reentrada en la atmósfera terrestre. Al emprender el retorno desde la Luna, Orión puede desplazarse a más de 30 veces la velocidad del sonido, provocando temperaturas externas capaces de superar los 2.700 grados Celsius.
Para soportar ese entorno, el escudo está recubierto con Avcoat, un material ablativo diseñado para carbonizarse y erosionarse de manera controlada. En teoría, este proceso disipa el calor de forma gradual, evitando que llegue al interior de la cápsula. El concepto no es nuevo: versiones de Avcoat ya se utilizaron con éxito en las misiones Apolo.
El problema surgió tras el vuelo de prueba Artemis I, realizado en 2022 sin tripulación. Al inspeccionar la cápsula tras su regreso, los ingenieros detectaron que grandes fragmentos del escudo térmico se habían desprendido, dejando cavidades profundas en la superficie. Aunque la nave regresó intacta y los análisis indicaron que, de haber habido astronautas a bordo, habrían sobrevivido, el comportamiento del material no coincidía con lo esperado.
Este descubrimiento llevó a la NASA a iniciar una investigación exhaustiva con el fin de entender con precisión qué sucedió durante la reentrada y determinar si ese fenómeno podría reproducirse o incluso intensificarse en una misión tripulada.
Decisiones de diseño que llegan desde el origen del programa
Para entender el debate actual, es necesario retroceder varios años en la historia de Orión. Cuando la NASA decidió, en 2009, utilizar Avcoat como material del escudo térmico, lo hizo basándose en décadas de experiencia previa. Sin embargo, la forma de aplicar ese material sí cambió respecto a la era Apolo.
En los primeros diseños, el escudo térmico se construía con una compleja estructura tipo panal, rellena de Avcoat. Este método ofrecía un comportamiento muy predecible, pero era lento, costoso y difícil de reproducir a gran escala. Con el objetivo de simplificar la producción, los responsables del programa optaron por un diseño alternativo basado en grandes bloques del material.
Desde el punto de vista industrial, la decisión tenía sentido: los bloques eran más fáciles de fabricar, probar e instalar. Sin embargo, Artemis I fue la primera ocasión en que este nuevo enfoque se probó en condiciones reales de reentrada lunar. Y fue precisamente ahí donde aparecieron las anomalías.
Los análisis posteriores determinaron que el Avcoat empleado carecía de la permeabilidad necesaria, y durante la reentrada los gases generados por el calentamiento quedaron retenidos dentro del material, lo que generó presión interna y terminó ocasionando el desprendimiento de partes del revestimiento; como consecuencia, el escudo térmico cumplió su función esencial, aunque lo hizo de una forma no prevista en los modelos originales.
Para ese momento, el escudo térmico de Artemis II ya había sido fabricado e instalado en la cápsula, y sustituirlo no era factible ni desde el punto de vista técnico ni del calendario.
Una estrategia centrada en ajustar la reentrada
Ante la imposibilidad de cambiar el escudo térmico, la NASA optó por una solución distinta: ajustar el perfil de reentrada de la nave. Orión está diseñada para realizar una “reentrada con salto”, una maniobra en la que la cápsula entra brevemente en la atmósfera, vuelve a ganar altitud y luego desciende de forma definitiva. Este perfil permite controlar con precisión el punto de amerizaje, pero también somete al escudo térmico a ciclos complejos de calentamiento.
Para Artemis II, los ingenieros han replanteado esta ruta, disminuyendo tanto la altitud como la fuerza del rebote inicial para evitar las condiciones que originaron el agrietamiento del escudo térmico en Artemis I. De acuerdo con la NASA, este cambio hará que el Avcoat se desgaste de forma más uniforme y con un comportamiento mucho más anticipable.
Los encargados del programa afirman que la determinación se sustenta en un examen minucioso de datos, simulaciones por computadora y ensayos efectuados en laboratorio, y desde su óptica el riesgo residual se clasifica como moderado y aceptable dentro de los estándares establecidos por la agencia.
No todo el mundo muestra esa misma confianza.
Críticas diversas y un diálogo que trasciende esta misión
Algunos exastronautas y expertos en protección térmica consideran que cambiar la trayectoria de reentrada no elimina el problema de fondo. Para ellos, el comportamiento del Avcoat sigue siendo difícil de predecir con precisión, especialmente cuando se trata de cómo se forman y crecen las grietas una vez que el material empieza a fallar.
Uno de los puntos más debatidos es el uso de modelos computacionales para estimar el riesgo. Estas herramientas permiten simular la generación de gases, la carbonización del material y el inicio de grietas, pero no siempre pueden anticipar cómo evolucionarán esas grietas en condiciones reales. Según los críticos, esta limitación introduce un nivel de incertidumbre que no debería ignorarse en una misión tripulada.
Incluso entre los expertos que apoyan el lanzamiento existe consenso en un aspecto: el escudo térmico de Artemis II probablemente mostrará daños visibles tras el regreso a la Tierra. La diferencia está en la interpretación de ese hecho. Para la NASA y algunos asesores, el diseño de Orión incluye márgenes suficientes para tolerar ese deterioro sin comprometer la seguridad de la tripulación. Para otros, aceptar ese escenario implica operar demasiado cerca de un umbral crítico.
Debajo del Avcoat, Orión incorpora una estructura compuesta que en ensayos controlados ha probado soportar por un corto periodo temperaturas extremas; aunque no se concibió como una protección formal, funciona como un nivel extra de defensa. La NASA afirma que no prevé depender de ella, pero admite que aporta mayor solidez al sistema.
Aprendizajes históricos y la manera en que la NASA afronta el riesgo
El debate sobre Artemis II no ocurre en el vacío. Para muchos veteranos de la agencia, está inevitablemente ligado a la historia del programa del transbordador espacial y a las tragedias del Challenger y el Columbia. En ambos casos, investigaciones posteriores señalaron fallas técnicas, pero también problemas culturales relacionados con la evaluación del riesgo y la presión por cumplir objetivos.
Algunos analistas señalan paralelismos inquietantes: una fe desmedida en marcos teóricos, la aceptación progresiva de irregularidades y la inclinación a tomar resultados favorables como pruebas concluyentes de procedimientos que todavía muestran vulnerabilidades. Desde esta perspectiva, incluso un Artemis II exitoso podría alimentar una sensación de seguridad poco realista.
Algunos dentro y fuera de la NASA descartan esa analogía, pues sostienen que la agencia ha aprendido de fallos previos, que actualmente opera con numerosas capas de verificación independiente y que la discusión vigente refleja, justamente, una cultura más dispuesta a admitir y examinar cuestionamientos técnicos.
La realidad probablemente se sitúe en un punto intermedio. La NASA reconoce que su historial no es perfecto, pero también sostiene que ningún avance significativo en exploración espacial ha estado exento de riesgos.
En el punto medio entre la seguridad técnica y la inevitable incertidumbre
A pocas semanas de su lanzamiento, todo indica que la decisión está tomada: Artemis II despegará con tripulación a bordo. Los responsables del programa han insistido en que la seguridad sigue siendo la prioridad absoluta y que, con los datos actuales, el nivel de riesgo se mantiene dentro de parámetros aceptables. Los astronautas designados para esta misión también han manifestado públicamente su confianza tanto en el vehículo como en el trabajo realizado por los ingenieros.
Sin embargo, incluso quienes apoyan la misión admiten que existen aspectos del comportamiento del escudo térmico que solo podrán confirmarse cuando la cápsula atraviese nuevamente la atmósfera terrestre. Hay variables que no pueden reproducirse por completo en tierra ni modelarse con exactitud absoluta.
Ese es, en última instancia, el núcleo del debate: hasta qué punto es razonable aceptar lo que no se puede saber con certeza. Para algunos, la exploración siempre implicará avanzar con información incompleta. Para otros, el margen actual aún deja demasiadas preguntas abiertas.
Lo que resulta evidente es que Artemis II no solo representará una operación técnica, sino que también funcionará como un examen de cómo la NASA combina innovación, cautela y presiones institucionales. El desenlace, sea cual sea, repercutirá en la percepción pública, en las decisiones venideras del programa Artemis y en la manera en que la agencia gestiona los riesgos propios de volver a enviar seres humanos más allá de la órbita terrestre baja.
Como han señalado incluso algunos de sus defensores, cuestionar estas decisiones no es un acto de oposición, sino parte esencial del proceso. La historia de la exploración espacial demuestra que el progreso no surge de la certeza absoluta, sino de la capacidad de aprender, corregir y avanzar sin olvidar que, en el espacio, la física no negocia y la suerte no siempre acompaña.
