Qué se debate en el ámbito de la gobernanza global de la IA

Qué se discute en la gobernanza internacional de la IA

La gobernanza internacional de la inteligencia artificial (IA) reúne a gobiernos, organizaciones internacionales, empresas, academia y sociedad civil para definir reglas, normas y mecanismos que orienten el desarrollo y uso de estas tecnologías. Los debates combinan cuestiones técnicas, éticas, económicas, de seguridad y geopolíticas. A continuación se presentan los temas centrales, ejemplos concretos y mecanismos que se proponen o aplican en distintos foros.

Amenazas para la seguridad y la integridad

La atención dedicada a la seguridad abarca errores involuntarios, usos malintencionados y repercusiones estratégicas de gran alcance. Entre los aspectos esenciales se encuentran:

  • Riesgos sistémicos: la posibilidad de que modelos extremadamente avanzados se comporten de manera inesperada o superen los mecanismos de control, comprometiendo infraestructuras críticas.
  • Uso dual y militarización: la incorporación de IA en armamento, sistemas de vigilancia y operaciones de ciberataque. En debates de la ONU y del Convenio sobre Ciertas Armas Convencionales se analizan opciones para regular o incluso vetar sistemas de armas totalmente autónomos.
  • Reducción del riesgo por diseño: estrategias como evaluaciones adversarias, auditorías de seguridad y la exigencia de análisis de riesgo previos a cualquier implementación.

Ejemplo: en el ámbito multilateral se discute la creación de normas vinculantes sobre SALA (sistemas de armas letales autónomas) y procedimientos de verificación para evitar proliferación.

Privacidad, vigilancia y protección de los derechos humanos

La IA plantea retos para derechos civiles y libertades públicas:

  • Reconocimiento facial y vigilancia masiva: riesgo de erosión de la privacidad y discriminación. Varios países y la Unión Europea estudian restricciones o moratorias para usos masivos.
  • Protección de datos: gobernanza del uso de grandes volúmenes de datos para entrenar modelos, consentimiento, minimización y anonimización.
  • Libertad de expresión e información: moderación automatizada, generación de desinformación y deepfakes que afectan procesos democráticos.

Caso: campañas de desinformación potenciadas por generación automática de contenido han llevado a debates en foros electorales y a propuestas para obligaciones de transparencia sobre el uso de sistemas generativos en campañas.

Promoción de la igualdad, rechazo a la discriminación e impulso de la inclusión

Los modelos pueden reproducir o amplificar sesgos existentes si los datos de entrenamiento no son representativos:

  • Discriminación algorítmica: evaluaciones independientes, métricas de equidad y mecanismos de reparación.
  • Acceso y desigualdad global: riesgo de concentración de capacidad tecnológica en pocos países o empresas; necesidad de transferencia de tecnología y cooperación para capacidades locales.

Dato y ejemplo: estudios han mostrado que modelos entrenados con datos sesgados dan peores resultados para grupos subrepresentados; por ello iniciativas como evaluaciones de impacto social y requisitos de testeo público son cada vez más solicitadas.

Claridad, capacidad de explicación y seguimiento

Los reguladores discuten cómo garantizar que sistemas complejos sean comprensibles y auditables:

  • Obligaciones de transparencia: informar cuando una decisión automatizada afecta a una persona, publicar documentación técnica (fichas del modelo, orígenes de datos) y facilitar mecanismos de recurso.
  • Explicabilidad: niveles adecuados de explicación técnica para distintos públicos (usuario final, regulador, tribunal).
  • Trazabilidad y registro: bitácoras de entrenamiento y despliegue para permitir auditorías posteriores.

la propuesta legislativa de la Unión Europea organiza los sistemas por niveles de riesgo y requiere que se entregue documentación exhaustiva para aquellos que se catalogan como de alto riesgo

Responsabilidad jurídica y cumplimiento

La asignación de responsabilidades ante daños generados por IA es un tema central:

  • Regímenes de responsabilidad: debate entre responsabilidad del desarrollador, del proveedor, del integrador o del usuario final.
  • Certificación y conformidad: modelos de certificación previa, auditorías independientes y sanciones por incumplimiento.
  • Reparación a las víctimas: mecanismos rápidos para compensación y remediación.

Datos normativos: la propuesta de la UE prevé sanciones ajustadas a la gravedad, incluidas multas de gran envergadura ante incumplimientos en sistemas clasificados como de alto riesgo.

Derechos de propiedad intelectual y disponibilidad de datos

El uso de contenidos destinados al entrenamiento de modelos ha provocado fricciones entre la creación, la reproducción y el aprendizaje automático:

  • Derechos de autor y recopilación de datos: disputas legales y demandas de precisión acerca de si el proceso de entrenamiento representa un uso permitido o necesita una licencia formal.
  • Modelos y datos como bienes estratégicos: discusiones sobre la conveniencia de imponer licencias obligatorias, habilitar el intercambio de modelos en repositorios abiertos o limitar su exportación.

Varios litigios recientes surgidos en distintos países han puesto en entredicho la legalidad del entrenamiento de modelos con material protegido, lo que está acelerando ajustes normativos y promoviendo acuerdos entre las partes involucradas.

Economía, mercado laboral y dinámica competitiva

La IA es capaz de remodelar mercados, empleos y la organización empresarial:

  • Sustitución y creación de empleo: diversas investigaciones revelan impactos mixtos: ciertas labores se automatizan mientras otras reciben apoyo tecnológico, por lo que resultan esenciales las políticas activas de capacitación.
  • Concentración de mercado: existe la posibilidad de que surjan monopolios debido al dominio de datos y de modelos centrales, lo que impulsa el debate sobre competencia e interoperabilidad.
  • Impuestos y redistribución: se analizan esquemas de tributación sobre ganancias ligadas a la automatización, así como mecanismos para sostener la protección social y los programas de recualificación.
Sostenibilidad ambiental

El impacto energético y material de entrenar y operar modelos es objeto de regulación y buenas prácticas:

  • Huella de carbono: entrenamiento de modelos muy grandes puede consumir energía significativa; indicadores y límites son discutidos.
  • Optimización y transparencia energética: etiquetas de eficiencia, reporte de consumo y migración a infraestructuras con energía renovable.

Estudio relevante: investigaciones han mostrado que el entrenamiento intensivo de modelos de lenguaje puede generar emisiones equivalentes a decenas o cientos de toneladas de CO2 si no se optimiza el proceso.

Regulaciones técnicas, estándares y procesos de interoperabilidad

La adopción de estándares facilita seguridad, confianza y comercio:

  • Marco de normalización: desarrollo de estándares técnicos internacionales sobre robustez, interfaces y formatos de datos.
  • Interoperabilidad: garantizar que sistemas distintos puedan cooperar con garantías de seguridad y privacidad.
  • Rol de organismos internacionales: OCDE, UNESCO, ONU, ISO y foros regionales participan en la armonización normativa.

Ejemplo: la OCDE formuló principios para la IA que han servido como referencia para muchas políticas públicas.

Verificación, cumplimiento y mecanismos multilaterales

Sin mecanismos de verificación creíbles, las reglas quedan en papel:

  • Inspecciones y auditorías internacionales: propuestas para observatorios multilaterales que supervisen cumplimiento y compartan información técnica.
  • Mecanismos de cooperación técnica: asistencia para países con menos capacidad técnica, intercambio de mejores prácticas y fondos para fortalecer gobernanza.
  • Sanciones y medidas comerciales: discusión sobre controles a la exportación de tecnologías sensibles y medidas diplomáticas ante incumplimientos.

Caso: las limitaciones impuestas al comercio de semiconductores ilustran cómo la tecnología de IA puede transformarse en un asunto de política comercial y de seguridad.

Instrumentos normativos y recursos aplicados

Las respuestas normativas pueden adoptar formatos rígidos o enfoques más adaptables:

  • Regulación vinculante: normas nacionales o regionales que establecen deberes y contemplan sanciones (por ejemplo, una propuesta legislativa dentro de la Unión Europea).
  • Autorregulación y códigos de conducta: lineamientos promovidos por empresas o asociaciones que suelen ofrecer mayor rapidez, aunque con requisitos menos estrictos.
  • Herramientas de cumplimiento: análisis de impacto, auditorías externas, sellos de conformidad y espacios regulatorios de prueba destinados a evaluar nuevas políticas.

Gobernanza democrática y participación de la ciudadanía

La validez de las normas se sustenta en una participación amplia:

  • Procesos participativos: audiencias públicas, órganos éticos y la presencia de comunidades involucradas.
  • Educación y alfabetización digital: con el fin de que la población comprenda los riesgos y se involucre en la toma de decisiones.

Ejemplo: en distintos países, varias iniciativas de consulta ciudadana han incidido en las exigencias de transparencia y en las restricciones aplicadas al empleo del reconocimiento facial.

Sobresalientes tensiones geopolíticas

La búsqueda por liderar la IA conlleva riesgos de fragmentación:

  • Competencia tecnológica: estrategias de inversión, apoyos estatales y pactos que podrían originar ecosistemas tecnológicos separados.
  • Normas divergentes: marcos regulatorios distintos (desde posturas más estrictas hasta otras más flexibles) influyen en el comercio y en la colaboración global.

Resultado: la gobernanza global intenta conciliar la armonización regulatoria con la autonomía tecnológica.

Iniciativas y menciones multilaterales

Existen varias iniciativas que sirven de marco de referencia:

  • Principios de la OCDE: lineamientos orientadores sobre la IA confiable.
  • Recomendación de la UNESCO: marco ético para orientar políticas nacionales.
  • Propuestas regionales: la Unión Europea impulsa un reglamento centrado en riesgo y obligaciones de transparencia y seguridad.

Estas iniciativas reflejan cómo se entrelazan directrices no obligatorias con propuestas legislativas específicas que progresan a distintos ritmos.

La gobernanza internacional de la IA es un entramado dinámico que debe integrar exigencias técnicas, valores democráticos y realidades geopolíticas. Las soluciones efectivas requieren marcos normativos claros, capacidades de verificación creíbles y mecanismos

Por Elena Aranda

También te puede gustar